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Pulse propagation in single-mode nonlinear fibers

∂A
∂z
− iβ̂A = iγ̂A(z,T) |A(z,T)|2 .

Dispersion β̂ =
∑
k≥2

ikβk
k!

∂k

∂Tk

Nonlinearity γ̂ =
∑
k≥0

ikγk
k!

∂k

∂Tk

Generalized Nonlinear Schrödinger Eq.
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Inverse-scattering

• Solitonic solutions (Zakharov 1972)
• Some simplifying assumptions such as neglecting

higher-order dispersion

Akhmediev breathers

• Family of periodic solutions (Akhmediev and Korneev
1986)

• Integrability in more complex cases, but still a limited
number of solutions

Analytical solutions to the GNLSE
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Why do we care?

• Exact solutions of simplified versions provide important
insight

• They cannot give a precise description in general⇒ the
GNLSE is usually studied by means of simulations

Analytical solutions to the GNLSE
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A particular case

• Propagation of a CW pump + noise
• (Technical + quantum) Noise is always present

Didn’t I talk about this 2 years ago?

• Yes! @ Denver: first order linear perturbation (modulation
instability - MI)

• Problem 1: undepleted pump⇒ short distances
• Problem 2: disregards cascading four-wave mixing effect

Our work
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Stationary solution + Perturbation

∂~̃a(ζ,Ω)

∂ζ
= H(Ω)~̃a(ζ,Ω) +

~̃N(~̃a(ζ,Ω))

Normalized distance: ζ = γ0P0 z
Perturbation: A(ζ,T) =

√
P0 [1 + a(ζ,T)] eiζ

Fourier transform: ~̃a(ζ,Ω) =

[
ã(ζ,Ω)

ã∗(ζ,−Ω)

]
Linear term: H(Ω) = i

[
B(Ω) γ̃(Ω)
−B(−Ω) −γ̃(−Ω)

]
Nonlinear term: ~̃N(~̃a(ζ,Ω)) =

[
γ̃(Ω)Ñ (ã(ζ,Ω))

γ̃(−Ω)Ñ∗ (ã(ζ,Ω))

]

Pump + Noise
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γ̃(Ω)Ñ (ã(ζ,Ω))
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Stationary solution + Perturbation

∂~̃a(ζ,Ω)

∂ζ
= H(Ω)~̃a(ζ,Ω) +

~̃N(~̃a(ζ,Ω))

• B(Ω) = β̃(Ω) + 2γ̃(Ω)− 1

• β̃(Ω) = 1
γ0P0

M∑
m=2

(−1)m

m! βmΩm, γ̃(Ω) = 1
γ0

N∑
n=0

(−1)n

n! γnΩn

Ñ(ã) =
[
ã(ζ,Ω) ∗ ã(ζ,−Ω)

]
+ ã(ζ,Ω) ∗

[
ã(ζ,Ω) + ã(ζ,−Ω)

]
+

ã(ζ,Ω) ∗
[
ã(ζ,Ω) ∗ ã(ζ,−Ω)
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Linear perturbation analysis

∂~̃a1(ζ,Ω)

∂ζ
= H(Ω)~̃a1(ζ,Ω)

Noisy solution:
〈
|ã(0,Ω)|2

〉
= s

〈
|ã1(ζ,Ω)|2

〉
≈ s +

(
e2G1(Ω)ζ − 1

)
|A1(Ω)|2s.

Motivation
This result motivates the following perturbative ansatz

Modulation instability
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Perturbative ansatz

ã(ζ,Ω) ≈
√

seiφ0(ζ,Ω) +

∞∑
n=1

(
eGn(Ω)ζ − 1

)
An(Ω)

√
sneiφn(ζ,Ω).

Simplifying assumptions

•
〈
eiφn(x,µ)

〉
= 0

•
〈
ei(φn(x,µ)−φm(y,ν))

〉
= 0 if either n 6= m, x 6= y or µ 6= ν −→

similar to the ‘random phase’ hypothesis in optical wave
turbulence (Picozzi et al. 2014)

Higher-order perturbation
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Gain

Gn(Ω) ≈ max
µ

[G1(µ) + Gn−1(Ω− µ)]

• Arises from the convolutions in the nonlinear operator
• Largest gain dominates −→ simplification of the

convolution integrals
• Incorporates the gain due to the perturbations amplified

by Gn acting as n-th order ‘pumps’: cascading FWM effect

Higher-order gain

11/22 P. I. Fierens Perturbation of the GNLSE



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Normalized frequency

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 n
-t

h 
or

de
r 

ga
in

G1
G2
G3

Higher-order gain

12/22 P. I. Fierens Perturbation of the GNLSE



Perturbation spectrum

|A1(Ω)|2 =

(
B(Ω)+B(−Ω)

2

)2
+ G2

1(Ω) + γ̃2(Ω)

2G2
1(Ω)

|An(Ω)| ≈ ∆n−1
Ω J(Gn(Ω),Ω)

J(g,Ω) =

√∣∣B(−Ω)− ig
∣∣2 |γ̃(Ω)|2 +

∣∣C(−Ω)
∣∣4∣∣[B(Ω) + ig]

[
B(−Ω)− ig

]
− γ̃(Ω)γ̃(−Ω)

∣∣

Spectrum
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Experiment

• A 770 m-long, dispersion-stabilized Highly-Nonlinear
Fiber (Kuo et al. 2012)

• 30 dBm-pump laser at 1590 nm

Simulations

• Same parameters as the experiment
• γ0 = 8.7 W−1Km−1, β2 = −3.9198 ps2/km, β3 = 0.1267

ps3/km, β4 = 1.7594× 10−4 ps4/km

Evaluation of the approximation
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Numerical results - 250 m
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Numerical results - 500 m
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Numerical results - 750 m
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Numerical results - 1000 m
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Experiment: Excellent agreement

Simulations: Good agreement even after 1 km (> 8 LNL)
Approximation order: n = 8
Higher order: What is the influence of higher-order terms?

Evaluation of the approximation
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Results

Higher order perturbation: Beyond the MI approach
Evaluation: Good agreement with experiments and

simulations with relatively simple equations
Insight: Cascading four-wave mixing effect exposed

Future work

More insights: What other conclusions/applications can be
derived from our simple expressions?

Simplification: Is there a simple way to arrive to our results?

Conclusions
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